Сахарный диабет нарушение белкового обмена

Механизмы нарушений белкового и липидного обменов при сахарном диабете

Нарушения жирового обмена. При инсу­лин ов ой недостаточности уменьшаются по­ступление глюкозы в жировую ткань и об­разование жира из углеводов, снижается ресинтез триглицеридов из жирных кислот. Усиливается липолитический эффект СТГ, который в норме подавляется инсулином. При этом повышается выход из жировой ткани неэстерифицированных жирных кислот и .снижается отложение в ней жира, что ведет к исхуданию и повышению содержания в крови неэстерифицированных жирных ки­слот. Данные кислоты в печени ресинте-зируются в триглицериды, создается пред­посылка для жировой инфильтрации печени. Этого не происходит, если в поджелудоч­ной железе (в клетках эпителия мелких про­токов) не нарушена продукция липокаина. Последний стимулирует действие липотроп-ных пищевых веществ, богатых метиони-ном (творог, баранина и др.). Метионин — донатор метильных групп для холина, вхо­дящего в состав лецитина, при посредстве которого жир выводится из печени. Сахарный диабет, при котором не нарушена про­дукция липокаина, называется островковым. Ожирения печени при этом не происходит. Если дефицит инсулина сочетается с недо­статочной продукцией липокаина, развива­ется тотальный диабет, сопровождающийся ожирением печени. В митохондриях пече­ночных клеток из неэстерифицированных жирных кислот интенсивно образуются кето­новые тела.

Кетоновые тела. К ним относятся ацетон, ацетоуксусная и р-оксимасляная кис­лоты. Они сходны по строению и способ­ны к взаимопревращениям (рис. 49). Кетоновые тела образуются в печени, посту­пают в кровь и оттуда — в легкие, мышцы, почки и другие органы и ткани, где окис­ляются в цикле трикарбоновых кислот до СОз и воды. В сыворотке крови должно содержаться 0,002—0,025 г/л кетоновых тел (в пересчете на ацетон).

В механизме накопления кетоновых тел при сахарном диабете имеют значение сле­дующие факторы:

1) повышенный переход жирных кислот из жировых депо в печень и ускорение окисления их до кетоновых тел;

2) задержка ресинтеза жирных кислот из-за дефицита НАДФ;

3) нарушение окисления кетоновых тел, обусловленное подавлением цикла Кребса, от участия в котором в связи с усиленным глюконеогенезом «отвлекаются» щавелевоуксусная и а-кетоглютаровая кис­лоты.

При сахарном диабете концентрация кетоновых тел возрастает во много раз (гиперкетонемия) и они начинают оказывать токсическое действие. Кетоновые тела в токсической концентрации инактивируют инсулин, усугубляя явления инсулиновой недостаточности. Создается «порочный круг». Гиперкетонемия — это декомпенсация об­менных нарушений при сахарном диабете. Наиболее высока концентрация ацетона, которая у большинства больных в 3—4 ра­за превышает концентрацию ацетоуксусной и (3-рксимасляной кислот. Ацетон оказывает повреждающее влияние на клетки, раство­ряет структурные липиды клеток, подавля­ет активность ферментов, резко угнетает деятельность центральной нервной системы. Гиперкетонемия играет важную роль в па­тогенезе очень тяжелого осложнения са­харного диабета — диабетической комы. Для нее характерна потеря сознания, частый пульс слабого наполнения, падение артери­ального давления, периодическое дыхание (типа Куссмауля), исчезновение рефлек­сов. Диабетическая кома сопровождается выраженным негазовым (метаболическим) ацидозом. Щелочные резервы плазмы крови исчерпываются, ацидоз становится неком­пенсированным, рН крови падает до 7,1— 7,0 и ниже. Кетоновые тела выводятся с мочой в ви­де натриевых солей (кетонурия). При этом повышается осмотическое давление мочи, что способствует полиурии. Концентрация натрия в крови уменьшается. Кроме того, при дефиците инсулина снижается реабсорб-ция натрия в почечных канальцах. Поэ­тому при резком снижении уровня сахара в крови в результате интенсивной инсулино-терапии коматозного состояния может резко снизиться суммарное осмотическое давление крови. Возникает опасность развития отека мозга. При сахарном диабете нарушается холе­стериновый обмен. Избыток ацетоуксусной кислоты идет на образование холестерина — развивается гйперхолестеринемия.

Нарушения белкового обмена. Синтез бел­ка при сахарном диабете снижается, так как:

1) выпадает или резко ослабляется сти­мулирующее влияние инсулина на энзи-матические системы этого синтеза;

2) сни­жается уровень энергетического обмена, обес­печивающего синтез белка в печени;

3) на­рушается проведение аминокислот через клеточные мембраны.

При дефиците инсулина снимается тормоз с ключевых ферментов глюконеогенеза и происходит интенсивное* образование глю­козы из аминокислот и жира. При этом аминокислоты теряют аммиак, переходят в а-кетокислоты, которые идут на образова­ние углеводов. Накапливающийся аммиак обезвреживается за счет образования мо­чевины, а также связывания его а-кето-глютаровой кислотой с образованием глута-мата. Возрастает потребление а-кетоглютаровой кислоты, при недостатке которой сни­жается интенсивность цикла Кребса. Недо­статочность цикла Кребса способствует еще большему накоплению ацетил-КоА и, следо­вательно, кетоновых тел. В связи с замед­лением тканевого дыхания при диабете уменьшается образование АТФ. При недо­статке АТФ снижается способность печени синтезировать белки.

Таким образом, при инсулиновой недо­статочности распад белка преобладает над синтезом. В результате этого подавляются пластические процессы, снижается продук­ция антител, ухудшается заживление ран, понижается устойчивость организма к ин­фекциям. У детей происходит задержка роста. При дефиците инсулина развиваются не только количественные, но и качествен­ные нарушения синтеза белка, в крови выявляются измененные необычные белки-парапротеины, гликозилированные белки. С ними связывают повреждение стенки сосу­дов — ангиопатии. Ангиопатии играют важнейшую роль в патогенезе ряда тяже­лых осложнений сахарного диабета (недо­статочность коронарного кровообращения, ретинопатия и др.).

Дата добавления: 2015-06-10 ; просмотров: 2279 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Использованные источники: helpiks.org

ПОХОЖИЕ СТАТЬИ:

  Продолжительность жизни больных с сахарным диабетом

  Сахарный диабет физические нагрузки 1 тип

Нарушение обмена веществ при сахарном диабете

НАРУШЕНИЯ УГЛЕВОДНОГО ОБМЕНА в основном заключаются в следующем:

1) затруднение транспорта глюкозы в мышечную и жировую ткань;

2) угнетение окисления глюкозы по пути фосфорилирования в связи со снижением активности ключевых ферментов, превращения глюкозы (гексокиназы, гликокиназы);

3) понижение синтеза гликогена в печени в связи со снижением активности гликокиназы;

Следствием всех этих прцессов является развитие основного симптома сахарного диабета – гипергликемии.

Основной путь превращения глюкозы в физиологических условиях – это путь окислительного фосфорилирования, осуществляемый под действием инсулина. В условиях его дефицита процесс окисления глюкозы по пути фосфорилирования угнетается и увеличивается удельный вес других путей обмена глюкозы. В частности, начинает преобладать анаэробное расщепление глюкозы. В результате в тканях образуется в повышенном количестве молочная кислота. Выделение ее в кровь ведет к развитию гиперлактацедемии, усугубляющей диабетический ацидоз. Кроме того, усиливается превращение глюкозы по сорбитоловому пути и, соответственно, накапливаются продукты этого превращения (сорбитол и фруктоза).

Сорбитоловый путь превращения глюкозы характерен для хрусталика глаза, нервной ткани, эндотелия сосудов. Накопление сорбитола и фруктозы в тканях способствует развитию осложнений сахарного диабета (катаракта, полинейропатия, ангиопатия).

При диабете увеличивается также использование глюкозы в образовании гликопротеидов (белков, составляющих базальную мембрану сосудов), что играет важную роль в патогенезе микроангиопатий.

Гипергликемия вызывает гликозилирование различных белков: гемоглобин, альбумин, белки базальной мембраны сосудов, что приводит к изменению их свойств, повышению иммуногенности и имеет значение в развитии сосудистых поражений.

Повышение уровня глюкозы в крови выше почечного порога (9,5-10 ммоль/л) сопровождается выделением сахара с мочой – глюкозурией, которая тем выше, чем интенсивнее гипергликемия. Выделение глюкозы с мочой сопроваждается увеличением диуреза. Глюкоза увлекает за собой жидкость в связи с повышением осмотического давления в провизорной моче и снижением реабсорбции мочи в канальцах почек. На каждый грамм глюкозы выделяется 20-40 мл жидкости. Таков механизм полиурии. Полидипсия при диабете вторичного происхождения. Она связана с интенсивным обезвоживанием организма.

Одновременно нарушается ВОДНО-СОЛЕВОЙ ОБМЕН. Больной теряет калий и натрий, усиление диуреза приводит к дегидратации.

НАРУШЕНИЕ ЖИРОВОГО ОБМЕНА при дефиците инсулина сводится к снижению синтеза жира и усилению липолиза. В результате мобилизации жира из депо развивается гиперлипидемия. Избыточный жир откладывается в бедных гликогеном гепатоцитах, вызывая жировую инфильтрацию печени. В кровь выделяются в повышенных количествах неэстерифицированные жирные кислоты, заменяющие глюкозу в качестве энергетического материала.

В печени, в условиях пониженного содержания гликогена, уменьшено превращение ацетил-Кол, а в цикле Кребса образуются в повышенном количестве недоокисленные продукты жирового обмена – кетоновые тела (оксимасляная кислота, ацетоуксусная кислота, ацетон). Развивается характерный для декомпенсации сахарного диабета кетоацидоз.

НАРУШЕНИЕ БЕЛКОВОГО ОБМЕНА заключается в угнетении синтеза белка и повышенном его распаде. Вследствие угнетения синтеза белка в детском возрасте наблюдается задержка роста.

В печени белок интенсивно превращается в углеводы. В процессе этого превращения диспротеинемии в сторону преобладания глобулиновых фракций образуются продукты распада (аммиак, мочевина, аминокислоты). Поступая в кровь, они обуславливают гиперазотемию.

При сахарном диабете вследствие нарушения белкового обмена снижается продукция защитных белков, что приводит к снижению иммунитета. Компенсация нарушений углеводного обмена, как правило, значительно улучшает показатели белкового, жирового и водно-солевого обмена. Однако нередко в клинической практике приходится прибегать к специальному лечению этих нарушений.

46.53.203.210 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Использованные источники: studopedia.ru

СТАТЬИ ПО ТЕМЕ:

  Сахарный диабет физические нагрузки 1 тип

  Стандарт мед.помощи больным сахарным диабетом

НАРУШЕНИя метаболизма углеводов и липидов при сахарном диабете

При сахарном диабете инсулин-глюкагоновый индекс снижен. Это связано не только с уменьшением секреции инсулина, но и с увеличением секреции глюкагона (инсулин ингибирует секрецию глюкагона). В результате оказывается ослабленной стимуляция процессов складирования и усиленной стимуляция мобилизации запасов, причем настолько, что печень, мышцы, жировая ткань даже после приема пищи функционируют в режиме постабсорбтивного состояния (см. рис. 2). При этом продукты переваривания, а также их метаболиты, вместо того чтобы складироваться в форме гликогена и жиров, циркулируют в крови. Вероятно, в какой-то мере происходят и затратные циклические процессы типа одновременно протекающих гликолиза и глюконеогенеза или синтеза и распада жиров и т.п.

Для всех форм сахарного диабета характерна сниженная толерантность к глюкозе, т.е. гиперглюкоземия после приема пищи или даже натощак.

Основные причины гиперглюкоземии:

— потребление глюкозы мышцами и жировой тканью ограничено, поскольку в отсутствие инсулина ГЛЮТ-4 не экспонирован на поверхности миоцитов и адипоцитов.

Следовательно, глюкоза не используется для запасания в форме гликогена в мышцах и в форме жиров — в жировой ткани;

— в печени глюкоза не используется для запасания в форме гликогена, поскольку при низкой концентрации инсулина и высокой глюкагона гликогенсинтаза находится в фосфорилированной неактивной форме;

— в печени глюкоза не используется и для синтеза жиров: ферменты гликолиза и пируватдегидрогеназа находятся в неактивной форме и, следовательно, заторможено превращение глюкозы в ацетил-СоА, необходимый для синтеза жирных кислот;

— путь глюконеогенеза при низкой концентрации инсулина и высокой глюкагона активирован и возможен синтез глюкозы из аминокислот и глицерина.

Другим характерным признаком сахарного диабета является повышенная концентрация в крови липопротеинов (главным образом ЛОНП), свободных жирных кислот и, главное, кетоновых тел. Это связано с тем, что пищевые жиры не депонируются в жировой ткани, поскольку сАМР-зависимая липаза адипоцитов находится в фосфорилированной (активной) форме. Отсюда и повышенное содержание свободных жирных кислот в крови. Жирные кислоты поглощаются печенью, часть их превращается в адипоцитах в триацилглицерины, которые в составе ЛОНП секретируются в кровь. Другая часть жирных кислот вступает в путь в-окисления в митохондриях печени, и образующийся ацетил-СоА используется для синтеза кетоновых тел.

КОМАТОЗНЫЕ СОСТОЯНИЯ (ОСТРЫЕ ОСЛОЖНЕНИЯ) ПРИ ДИАБЕТЕ КАК РЕЗУЛЬТАТ НАРУШЕНИЯ ОБМЕНА ГЛЮКОЗЫ И ЖИРОВ

При сахарном диабете возможны три основные формы коматозных состояний: кетоацидотическая кома с абсолютной инсулиновой недостаточностью; гиперосмолярная кома с умеренной недостаточностью инсулина; лактатацидотическая кома с выраженной гипоксией, сепсисом, сердечно-сосудистым шоком. Кроме того, при инсулинотерапии может быть гипогликемическая кома, связанная с передозировкой инсулина. Первые три состояния могут развиться не только при сахарном диабете, но и при действии многих других факторов (токсических, инфекционных и др.).

Три основные формы коматозного состояния практически никогда не встречаются по отдельности. Обычно преобладают проявления какой-нибудь одной из форм (часто гиперосмолярной), что и дает повод для выделения основных форм.

Первичной причиной кетоацидоза является инсулиновая недостаточность: в период комы С-пептид и иммунореактивный инсулин (ИРИ) в крови не определяются. Гипергликемия отмечается всегда (20—30 ммоль/л, иногда более). Ацидоз при диабетической коме—это следствие накопления органических кислот: кетоновых тел, а также лактата и пирувата. Концентрация кетоновых тел достигает 2 ммоль/мл (в 200 раз больше нормы); она повышается не только вследствие синтеза в печени, но и потому, что снижается экскреция кетоновых тел в связи с олигурией и анурией, которая часто бывает при коме. Снижение рН крови до 7 и ниже (норма 7,4) наблюдается всегда.

Развивается дегидратация: дефицит воды может быть до 10 % от общей массы тела. Количество циркулирующей жидкости уменьшается на 25—30 %, в результате чего снижается артериальное давление.

Кислородное и энергетическое голодание миокарда, уменьшение объема крови ведут к сердечно-сосудистой недостаточности. Возможны повышение свертываемости крови, инфаркт миокарда, инфаркты паренхиматозных органов, инсульт, периферические тромбозы.

Диабетическая кома развивается медленно, в течение нескольких дней, иногда может возникнуть за несколько часов. Появляются тошнота, рвота, черты лица заостряются, глаза западают, нарастают безучастность к окружающему, заторможенность, переходящая в глубокую кому (полностью выключенное сознание, отсутствие рефлексов, атония мышц и др.). В помещении, где находится больной, ощущается запах ацетона. Артериальное давление снижено, почти всегда наблюдается олигурия или анурия. Диабетическая кома требует немедленного проведения следующих мероприятий: 1) ликвидация инсулиновой недостаточности путем введения инсулина в дозах, обеспечивающих постепенное снижение концентрации глюкозы в крови до уровня, близкого к нормальному; 2) регидратация организма путем введения жидкости; 3) восстановление нормального солевого состава и рН жидкостей организма путем введения соответствующих солевых растворов; 4) восстановление запасов гликогена в организме.

Проявления комы обычно ликвидируются в течение 2—3 дней при непрерывно продолжающемся лечении, причем лечение в начальные часы имеет решающее значение для больного.

До развития методов лечения диабета инсулином больные умирали вскоре после начала болезни от диабетической комы. Однако и в настоящее время кома наблюдается нередко. В частности, первое проявление болезни в 15—30 % случаев сопровождается кетоацидозом и комой. Смертность от диабетической комы остается высокой — от 1 до 30 %. Основной причиной смерти больных диабетом в настоящее время являются поздние осложнения.

ГЛИКозилИРОВАНИЕ БЕЛКОВ — ОДНА ИЗ ГЛАВНЫХ ПРИЧИН ПОЗДНИХ ОСЛОЖНЕНИЙ САХАРНОГО ДИАБЕТА

Поздние осложнения сахарного диабета связаны прежде всего с повреждением кровеносных сосудов (диабетические ангиопатии). Основной механизм повреждения тканей — гликирование (гликозилирование) белков — не ферментативная реакция глюкозы со свободными аминогруппами белковой молекулы (Лиз, Арг, N-концевая аминокислота):

Вначале образуется нестабильная альдиминовая группировка, которая может превращаться в ряд других, более стабильных соединений («ранние продукты гликозилирования»). Понятно, что функции белка могут быть нарушены в результате изменения заряда белковой молекулы, ее конформации или блокирования активного центра. Гликозилирование — медленная реакция, в тканях здоровых людей обнаруживаются лишь небольшие количества гликозилированных белков. При гипергликемии реакция существенно ускоряется. Например, у больных диабетом в состоянии гипергликемии содержание одного из гликозилированных гемоглобинов — HbAlc — в течение 2—3 нед увеличивается в 2—3 раза. Степень гликозилирования разных белков неодинакова; в основном она зависит от скорости обновления данного белка. В медленно обменивающихся белках накапливается больше модифицированных аминогрупп. Кроме того, в таких белках происходят дальнейшие изменения углеводных остатков: перестройка структуры, окислительные превращения, в результате которых образуются разнообразные «поздние продукты гликозилирования» (ППГ), часто коричневого цвета, флюоресцирующие, и некоторые из них обладают высокой реакционной активностью и способностью дополнительно повреждать белки, в том числе образовывать поперечные сшивки между молекулами белков. К медленно обменивающимся белкам относятся многие белки соединительно-тканных образований, межклеточного матрикса, базальных мембран. К тому же белки этих структур непосредственно контактируют с межклеточной жидкостью, в которой концентрация глюкозы такая же, как в крови (в клетках она обычно гораздо ниже в результате использования глюкозы в метаболических процессах). В этих структурах ППГ накапливаются с возрастом, накопление сильно ускоряется при сахарном диабете.

ППГ-белки могут гидролизоваться макрофагами (с участием ППГ-рецепторов) или межклеточными протеолитическими системами с образованием ППГ-пептидов, часто длиной около 30 аминокислотных остатков. ППГ-белки, особенно образующиеся в результате их гидролиза ППГ-пептиды, попадают и в кровоток. Концентрация ППГ-пептидов в крови резко повышается при почечной недостаточности разного происхождения, в том числе при диабетической нефропатии. Это связано с тем, что элиминация ППГ-пептидов происходит с участием почек: ППГ-пептиды фильтруются в клубочках, реабсорбируются клетками проксимальных канальцев и катаболизи-руются в лизосомах этих клеток.

В экспериментах на крысах показано, что введение ППГ-белков в кровь приводит к ковалентному связыванию этих белков с белками межклеточного матрикса во многих тканях и к появлению структурных и функциональных нарушений, сходных с теми, которые бывают при сахарном диабете.

ППГ проявляют многообразную биологическую активность: повышают проницаемость эндотелиальных клеток, соединяются с рецепторами макрофагов, эндотелиальных и мезангиальных клеток, активируют макрофаги к секреции цитокинов (рецепторным путем), подавляют образование NО и соответственно ингибируют расширение сосудов, усиливают окисление ЛНП. В крови больных диабетом обнаруживаются антитела к ППГ-пептидам.

Использованные источники: bio.bobrodobro.ru